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ABSTRACT

An exact analysis is presented for shielded
microstrip and bilateral finlines. The
method is based on a function theoretic
approach to solve a set of functional equ-
ations in the Fourier transform domain,
representing the independent excitation of
LSM and LSE modes in the system without
strip or fin conductors. The solution is
obtained in the form of highly convergent
system of algebraic equations,which allow
accurate calculation of fields and electri-
cal parameters of these lines at any given
frequency.

I.INTRODUCTION

Microstrip lines,being an important element
of microwave integrated circuits,were exte-
nsively investigated both theoretically and
experimentally/1-8/.However,it seems that
the problem has not yet been solved comple-
tely as remarked in/9/.Most methods of ana-
lysis suggested in the literature suffer
from serious limitations and usually include
assumptions that may lead to considerable
uncercainty in the obtained results.Thus,
most design calculations are till now perf-
ormed using quasi-static results of Wheeler
and others.More rigorous hybrid mode analysis
are done either numerically or using mathe-
matical methods leading to sets of equations
the convergence of which is not high enough
to insure sufficiently accurate results at

a reasonable effort or to allow a physical
understanding of the problem.Alternatives

to microstrip lines for use in integrated
circuits at higher microwave and millimeter
wave frequencies were introduced in the form
of unilateral and bilateral finline configu-
rations/10-12/.These lines were investigated
by several authors using different techniques
/13-16/. Due to the fact that finlines are
always mounted in rectangular waveguides,
there has been a general tendency to treat
them as modified forms of ridged guides.,
This tendency reflected on the mathematical
methods used,which are in fact very similiar
to those used for ridged guides and waveguide
discontinuities.The waveguiding properties
of the gap between the fins,regardless of the
waveguide housing itself were almost over-—
looked.In fact finlines can support guided
waves even when the housing is removed alto-
gether,as fields are concentrated in the gap
regions.In the following,a method based on
modified Wiener-Hopf technique is applied to
shielded microstrip and bilateral finlines
without side-walls.The formulation of the
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problem is exact and no assumptions were

made during the solution.The high rate of
convergence obtained allowed essentially

accurate determination of the electrical

parameters .

IT.FORMULATION OF THE PROBLEM

Consider the dual structures shown on fig.
1. ,comprising symmetrical strip and bi-
lateral finlines with two symmetrically lo-
cated shields.The width of the strip or the
gap width of the fins are denoted by w,the
thickness of the dielectric layer is 24,
and d, is the distance between the dielectric
surface and the shield.The relative permi-
ttivity and permeability of the dielectric
are gr)/g.respectively,while those of free
space are Eo,/(/o .

Fundumental mode fields of the microstrip
and bilateral finlines correspond to elect-
ric wall symmetry in the microstrip and ma-
gnetic wall symmetry in the finline config-
urations of fig.l. w.r.t. the plane at the
middle of the dielectric layer thickness,
leading to the basic models of fig.2. The

cartesialh axes x,y,z are chosen as shown.
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Fig.l.Symmetrical strip(a) and
bilateral finline(b)conf-
igurations.
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Fig.2.Microstrip line and bi-
lateral finline configura-
tions considered in the paper.

Considering the structure without the
strip or fin conductors,which is in fact a
dielectric loaded parallel plate waveguide,
we assume a surface current distribution
J (y,z),J (y,z) to flow over the dielectric
surface.The surface currents will excite a
field with electric field components tangen-
tial to the dielectric surface given by
Ey(O,y,z),EZ(O,y.z) .

Considering fields with dependence on time
t and the longitudinal coordinate 2z of
the form exp(ijyz-iwt) , where ) is a
real propagation constant and ¢« 1is the
angular frequency, field and current compo-
nents are expressed in terms of thier Four-
ier transforms ,defined for a function £(y)

as
-+ 00

%(a)=/f(y)e’i°‘ydy (1)
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Next we introduce a set of functions U, (o ),
u (¢),F.(a),F_{(x) as linear combinations
o% the Fourier %ransforms of surface currents
and tangential electric field components:

Ul=—oz3y(oz )+[32(04)
A N
Fl=—oLEy(a£)+[Ez(w)
A A
F,= [Ey(AlHoéEz(cz)

Functions
tg Ul’UZ
tions:

Fl,F can be shown to be related
through“the following set of equa-

“lw g X ()P (@)= U (o)
X, (&)F, ()=l U, () (3)

X.,X, are the transforms of inverse Green's
funZtidns for sources of LSM and LSE wave
types respectively in the loaded guide with-
out strips or fins.They have thier zeroces,
rather than poles, coinciding with the pro-
pagation constants of these modes.
Xl’XZ

Explicit expressions for have the

form

X. =

CothRod, . ¢ CothRd
1 R r

o R

X,=R CothR d + l~R CothRd
2 7o o o A

for electric wall symmetry(microstrip case),
and

Xl=

CothR°d°+ £ TanhRd
R, r R

1
XZ- RO CothRo d° + —r R TanhRd

’

for magnetic wall symmetry(finline case),

where
2 2 2 2 2
R?;:a+[—k°2 , R2=04+{—k ,
2 2 2 2
komwfgl . K= E K,

IIT.FIELDS IN THE MICROSTRIP LINE

The set of functional relations (3) can be
used for the solution of the problem of
propagation in the microstrip line.

If the strip is assumed to be thin and
ideally conducting,then the following boun-
dary conditions should be satisfied:

Ey(0,y)=0 } for o<y< W,

EZ(O,y)=O
I, y)=0 } for y{0 , y>w. (4)
J _(y)=0
z
Boundary conditions (4) will reflect on the
properties of the functions Fl,FZ,Ul,U2

as follows:

a- U,,U will be entire functions
having algebraic behavior on the upper half
of the o -plane .

b- Fl,F2 can be expressed as

- i W -

Fi= Filot)t e Fo(-a)
- - i W -

F,= F2(o(.)+ e FZ(—()().

Functions Fi,F_ are regular in the lower
half-plane and %ave algebraic behavior for



large o . Upper signs refer to modeg
with symmetrical longitudinal current dist-
ribution on the strip,while lower signs to
anti-symmetrical modes .

Therefore for the microstrip line the foll-
owing functional eqguations can be written:

Lg U (@)=l S N
21 (5)
Wh, U (a)=F ()7 e *VFI(-)
: 2 2 2
1 X2

Equations (5) allow solution using modified
Wiener-Hopf technique/17/.0mitting details,
the solution for symmetrical modes can be
written in the form

S
- - _E_ N
Fl(d)_ Xz{l zo(-oc,, An}

Q %50 S;
F—(o()z ——{l - y——— B
2 X; Z;fx'%xn n}
n=1

P,0 are yet undetermined constants and
o, are the poles of X ,X ,which coincide
except for the zero-order pGle of Xl,given
by o > >
> = k- J’ .

(6)

These poles represent the propagation co-
nstants of waveguide modes in the regions
above and under the strip. X,,X, are funct-
ions,regular and having no rootS on the low-
er half-plane,resulting from the factorisa-
tion of X, ,X, . Coefficients A ,B satisfy
the following systems of equatigns:

5.
A =1+ —— n=0,1,2,..
n Zd”"’dmAm 1 [l Bl |
m:os
B=14+ )Yy—2 _p | n=1,2,..
n oc+olm m
rn::{"
Coefficients 3;, S;

§ _ Res Xz(%)eL%W -
n xi(—ot) n
h

(7)

are given by
ResXZ(af,) Jolw
I —

x%(—%)

For propagating microstrip modes all c{n,
with the exception of 0% ,are imaginary
and are given by

" <\/k2-]'2—(n77/d)2 ,
n N K2-riemrsa)? .

When the strip width is not too small,
systems (7) are exponentially convergent
and can be effectively solved by iteration
techniques to practically any required deg-
ree of accuracy .

It should be noted,that till this point
fields of LSM and LSE types were treated
quite independently.This is actually the
main advantage of the introduction of the

variab .
riables Fl,Z , Ul,2

However,fields in microstrip lines should
be of the hybrid type and LSM,LSE fields
are necessarily coupled .This coupling is
actually present as P,Q have to satisfy cer-
tain conditions,necessary to achieve physic-
ally proper field behavior .

Once Fl’F ’Ul’UZ are determined, the phys-
ical varlabies J ,J_,E_,E can be obtained
through transform¥tidns inferse to (2).These
inverse linear transformations are singular
at the points

o[:j_i[ .
. A A
Since J_,J are entire functions,the cons-
tants PYan& Q must be chosen such that
U (#if) + i U, (+i)f) =0,

which is equivalent to

Folei)y) + 4 Fo(+1 ) 0. (8)

Conditions (8) lead to a set of two homo-—
geneous linear equations in P and Q.For
non-vanishing fields the determinant must
be equal to zero. This condition determines
the possible values of the propagation con-
stant and the coupling of fields,as exp-
ressed by the ratio P/Q.

IV.WAVE PROPAGATION IN FINLINES

The presence of fins will impose boundary
conditions,dual to (4). Thus,surface currents
J ,J vanish on the gaps,while tangential
efectric field components E_,E must vanish
on the fins: y =z

Jy(y)zo
for Oy d{W,
J (y)=0 } <vg
z
E_(0,y)=0
b4 } for y £ O, y> W. (9)
EZ(O,y)=0

To satisfy boundary conditions (9),the foll-
owing properties must be prescribed to the
F and U functions:

a- F_,F are entire functions having
algebraic b&havior in the upper half-plane.

b- U, ,U, for finline modes with anti-
symmetrical®longitudinal currents should be
represented in the form

HEW T,
LW o),

U= Ul(cl) + e

U,= Ug(ol) - e 5
where U,, U are functions,regular in the
lower ha}f~p%ane.

Taking into consideration the properties
a,b ,functional equations (3) can be written
ixX w

—ia)Ez’Xl(o()Fl(O()=Ul(o() + e Ul(—OC),

461



iX, (&) 1XW

2 F2(0<)=U2(
OF,

Equations (10) represent the complete math-
ematical problem of the bilateral finline.
They can be solved in a way similiar to that
used for (5) Taking into account the edge
conditions ,this solution can be written

} _ 8, N
Ul(ot)= PXl(OC) {14— z—z—?’:‘— n}
ns 1

_ ) S,
(OL)=QX2(O‘) 2:1— Z—O—L—:?n— Bn-)
nz{
(11)

ol ) - e U—Z-(—OL),

(10)

P,Q are yet undetermined constants. X,,X,
are the "minus" functions resulting from

the factorisation of Xl'XZ Coefficients

§ § are given by
2
[X())U 1Yw [X( ] LB W
n Xl(xv) n 2( n)
%7 ,G; are the roots of X_,X on the upp-

er half-plane,while the co&fficients An’B
are determined from the following systems
of equations

Z Sa
A =1 - — A,
n WL*'ﬂh m

m=

n=l,2,...,

n=1,2,... (12)

Except for very narrow-gap finlines, systems
(12) are highly convergent due to the prese-
nce of exponential factors in §,,S,, , Y,
6,, being imaginary for most surface waves.
Coeff1c1ents A_,B_ can practically be cal-
culated to any requlred degree of accuracy
at a reasonable computational effort .

Coupling of LSE and LSM fields is establi-
shed as in the case of microstrip line thr-
ough relations between P,Q ,which have to
be satisfied in order to eliminate singula-
rities in the transforms of the tangential
electric field components and surface curr-
ents.These relations are written as

ul(zay) £ 1 (+if) =0.

Since are proportional to P,Q ,
these cons%an%s satisfy two homogeneous lin-
ear equations.The simultaniety of these equ-
ations requires a vanishing determinant
Thus the possible values of are determlned
as the roots of this determinant and the ra-
tio P/Q, which 1is the measure of LSE-LSM
coupling, may be calculated.

V .NUMERICAL, RESULTS AND PHYSICAL
INTERPRETATION.

For checking of the effectiveness of the
suggested method computations have been per-
formed for a microstrip line with parameters

& =8.875 .=1.0 d_/d=10

Y w/a=0.5,1,2,4.

’ 7

and for bilateral finline with parameters:
€ =9.7 JMA=1.0 , 4 /d=5.0
wW/d=0.5,1,2,4.

Factorisation of the meromorphic functions

X , X was achieved by the standard proced-
ure o% expansion in infinite products invol-
ving poles and roots .The infinite sets of
equations (7),(12) ,being nearly diagonal,
were solved by iterative procedure showing
very quick convergence.The results of comp-
utation of the effective dielectric constant

2
Eopp =LY /KT,

and the wave impedance are shown on fig.3, 4.
The definition used for the wave impedance
of the microstrip line is similiar to that
adopted at low frequencies i.e. the ratio of
the voltage at the center of the strip to the
total longitudinal current .For finlines the
wave impedance is taken as the ratio of the
integral over the y-component of the electric
field over the gap to the total longitudinal
current on one of the fins.

In the case of microstrip line approximate
calculations using only one term n=0 in the
sum over A_ are also shown as dashed lines.

Coincidence of the approximate and exact
values over a considerable part of the freg-
uency interval indicates high rate of conver-
gence of the systems of equations ,especially
at high frequencies .Moreover it shows that
the field propagates along the microstrip
line essentially in a multiple reflection
mode as in rectangular and dielectric guides.
The field under the strip is essentially the
sum of two plane TEM waves propagating at
angles +¢ ,where ¥ is given by

¢ =cos” " ( y/x) o,
to the z-axis and are reflected from the str-
ip edges.In the case of narrow strips or at
low frequencies this picture is distorted as

the evanescent modes at the edges will couple
together significantly.

In bilateral finlines the propagation of
non-attenuating waves 1s possible only when
all poles of X,,X, ,which coincide with the
propagation conStaflits of waveguide modes 1in
the regions y < 0 , y > W ,are imaginary.
Otherwise,the excitation of these modes will
necessarily lead to loss of power through
radiation sidewards and to the decay of the
main wave in the longitudinal direction .
These poles form two SetS‘

k - —(n u/d ) n=0,1,2,

04{\/72 r= [in- /)///d]

Therefore the allowed values of
ted to the range

k2> f2> max. {_kcz),kz—( 77'/2d)2} .

For this range of Y all propagation constants
of LSM and LSE modes in the gap region are
imaginary ,except for the lowest order LSE
mode corresponding to the first root of X2,

are limi-
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This root denoted by ST ,can be either real
or imaginary.Depending on the value of &, |,
two modes of propagation in finlines can be
distinguished.When 6y is imaginary the field
in the gap region has a quasi-static charac-
ter and all coefficients §,, § are real.When

6, is real,the field propagates in a wave-
guide mode,guided by multiple reflections of
the surface wave from the fin edges,where
conditions of total reflection exist as all
waveguide modes are evanescent.computations
have shown ,that the two modes are possible.
Quasi-static mode dominates at low frequen-
cies while the waveguide mode is dominant at
high frequencies.

Calculations revealed a curious behavior
of the dispersion curves of finlines at diff
erent gap widths in the transition region
between quasi-static and waveguide modes.

It was found that these curves,regardless of
the gap width,intersect at a common point on
the line representing the dispersion charac-
teristics of the surface wave mode corres-
ponding to &, .This can be explained by the
fact that the effect of the width of the gap
on the dispersion characteristics is differ-
ent in the two regions.Thus,in the quasi-
static mode smaller gaps tend to lower the
phase velocity due to field concentration in
the dielectric.In the waveguide mode this ef-
fect is reversed as wider gaps tend to dec-
rease the phase velocity towards the value
for the free surface wave velocity.This eff-
ect is analogous to the effect of width in
rectangular guides.Therefore,the family of
dispersion curves at different widths should
have an intersection point where the effect
is reversed .

Following this analysis it must be remar-
ked, that the bilateral finline is senstive
to geometrical imperfections violating the
symmetry of the field,e.g. relative dis-
placement of the gaps.In this case the fun-
dumental TEM mode in the dielectric filled
waveguides between the fins will be excited,
leading to loss of power in the side direc-
tions in finlines without walls or to strong
coupling to the walls if they are present.
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Fig.4-b.Variation of bilateral
finline wave impedance with the
normalised frequency parameter kd.



