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ABSTRACT

An exact analysis is presented for shielded

microstrip and bilateral finlines. The
method is based on a function theoretic

approach to solve a set of functional e,qu–
ations in the Fourier transform domain,

representing the independent excitation of

LSM and LSE modes in the system without

strip or fin conductors. The solution is

obtained in the form of highly convergent

system of algebraic equations,which allow
accurate calculation of fields and electri–

cal parameters of these lines at any given

frequency.

I.INTRODUCTION

Microstrip lines,being an important element

of microwave integrated circuits,were exte-

nsively investigated both theoretically and
experimentally\l–8/ .However,it seems that

the problem has not yet been solved comple-
tely as remarked inj91.Most methods of ,ana–

lysis suggested in the literature suffer
from serious limitations and usually include

assumptions that may lead to considerable

uncertainty in the obtained results.Thus,
most design calculations are till now perf-

ormed using quasi-static results of Wheeler
and others.More rigorous hybrid mode analysis

are done either numerically or using mathe-

matical methods leading to sets of equations

the convergence of which is not high enough
to insure sufficiently accurate results at
a reasonable effort or to allow a physical
understanding of the problem.Alternativ(?s

to microstrip lines for use in integrated
circuits at higher microwave and millimeter
wave frequencies were introduced in the form

of unilateral and bilateral finline configu.

rationsl10–12\.These lines were investi(~ated
by several authors using different tf2ChIliqUeS

/13-16/. Due to the fact that finlines are
always mounted in rectangular waveguides,
there has been a general tendency to tr~?at
them as modified forms of ridged guides,,

This tendency reflected on the mathematical

methods used,which are in fact very .sirniliar
to those used for ridged guides and wav(?guide
discontinuities.The waveguiding propert~es

of the gap between the fins,regardless of the
waveguide housing itself were almost over-
looked.In fact flnl~nes can Support guided

waves even when the housing is removed alto-

gether,as fields are concentrated in th(? gap
regions.In the following,a method based on
modified WleneT–Hopf technique is applied to

shielded microstrip and bilateral finlines
without side–walls.The formulation of the

problem is exact and no assumptions were

made during the soluti.on.The high rate of
convergence obtained allowed essentially

accurate determination of the electrical

parameters .

11.FORMULATION OF THE PROBLEM

Consider the dual structures shown on fig.
1. , comprising symmetrical strip and bi–

lateral finlines with two symmetrically lo–

cated shields.The width of the strip or the

gap width of the fins are denoted by w,the

thickness of the dielectric layer is 2d,
and d

o
is the distance between the dielectric

surface and the shield.The relative permi–

ttivity and permeability of the dielectric

are ZV)~YresPectively,while those of free
space are

~o>po .

Fundamental mode fields of the microstrip
and bilateral finlines correspond to elect–

ri.c wall symmetry in the microstrip and ma–
gnetic wall symmetry in the finline conf~g–

urat~ons of f~g.1. w.r.t. the plane at the

middle o~f the dielectric layer thickness,

leading to the basic models of fig.2. The

cartesia~ axes X,Y,Z are chosen as shown.

l-w +
b- /////////////////////

Fiq.1.Symmetrical strip(a) and

bilateral finline(b)conf-
igurations.
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Functions F1,FZ can be shown to be related

to u
tion*ju2

through the following set of equa-

-i cd &o Xl(cZ)Fl(&)= Ul(d)

i-

T

Y

Electric wall

Y

Magnetic wall

Fig.2.Microstrip line and bi-
lateral finline configura-
tions considered in the paper.

Considering the structure without the

strip or fin conductors,which is in fact a

dielectric loaded parallel plate waveguider

We aSSUme a surface current distribution

J (y,z),J (y,z) to flow over the dielectric

xs rface.T~e surface currents will excite a

field with electric field components tangen-

tial to the dielectric surface given by

EY(O,Y, Z),EZ(O,Y,Z) .

Considering fields with dependence on time

t and the longitudinal coordinate z of

the form exp(i~z–it it) , where ~ is a

real propagation constant and 0 is the

angular frequency, fie~d and current compo-
nents are expressed in terms of thier Four–

ier transforms ,defined for a function f(y)

as
AM

;(d)= Jf(y)e ‘~d ‘dy (1)

-w

Next we introduce a set of functions U (0( ),

U9(LU),F, (LY),F7(CM) as linear combina~ions

o~ the F6urier

and tangential

U1.-a! :
Y

U2= ~:
Y

Fl=-@~

F,= @:

~ransforms of surface currents
electric field components:

d)+~fz(a)

@ )+OL:Z(OG)

OL)+{;Z(E)

LY)+Ci6z(&)

(2)

i X2(OL)F2(d)=@/oU2(CZ ) (3)

xx are the transforms of inverse Grec?n’s

fun$;i;ns for sources of LSM and LSE wave
types respectively in the loaded guide wit:h–
out strips or fins.They have thier zeroes,

rather than poles, coinciding with the prc)–
pagation constants of these modes.

Explicit expressions for have the
form

X1,X2

~ . CothROd CO thRd
O+E—

1 RO r R

X2=ROCothROdO+ ~ R CothRd
/%

for electric wall symmetry(microstrip case),
and

~ . CothROd TanhRd
O+E—

1 R. r R

X2= RoCothRO do+ 2 R TanhRd ,

P.
for magnetic wall symmetry(finline case) ,

111.FIELDS IN THE MICROSTRIP LINE

The set of functional relations (3) can be
used for the solution of the problem of
propagation in the microstrip line.

If the strip is assumed to be thin and
ideally conducting,then the following boun,.
dary conditions should be satisfied:

Ey(O,y)=O

}

for O<Y<W,
Ez(O,y)=O

Jy(y)=O

1

for y<O , y>w . (4)

Jz(y)=O

Boundary conditions (4) will reflect on the

properties of the functions
as follows:

F1,F2,U1,U2

a- ‘1’U2
will be entire functions

having algebralc behavior on the upper half

of the d-plane .
b- FI,FO can be expressed as

Functions F~,F- are regular

half-plane and ?ave algebraic

in the lower
behavior for
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large ~ . Upper signs refer to modes

with symmetrical longitudinal current distr-

ibution on the strip,while lower signs to

anti–symmetrical modes .

Therefore for the

owing functional eql

microstrip line the foil

ations can be written:

Equations (5) allow solution using modified

Wiener–Hopf technique/17/.Omitting details,

the solution for symmetrical modes can be

written in the form

(6)

L ,9.{

P,Q are yet undetermined constants ancl

&n are the poles of X1,X2 ,which coincide
except for the zero-order pole of X, ,given

by
do= I/+ .

These poles represent the propagation co-

nstants of waveguide modes in the regions

above and under the strip. X- X- are fur~ct–

ions,regular and having no rh;t; on the low-

er half-plane,resulting from the factorisa–

tion of X1,X2 . Coefficients A ,B sati sfy

the followlng systems of equati~ns?

An=

Bn=

1+

1+

Am

EM

Coefficients fn , $n are

, n=0,1,2, . .

n=l,2,

given by

ResX~
*

. .

<)

For propagating microstrip modes all ~~n ,

with the exception of @o ,are imaginary

and are given by

~1

$ <Jk:-r’(n@ .

When the strip width is not too small,
systems (7) are exponentially convergent

and can be effectively solved by iteration
techniques to practically any requiredc leg-

ree of accuracy .

It should be noted,that till this point
fields of LSM and LSE types were treated
quite independently.This is actually the

main advantage of the introduction of the

variables
‘1,2 ‘ ‘1,2”

However,fieids in microstrip lines should
be of the hybrid type and LSM,LSE fields
are necessarily coupled .This coupling is

actually present as P,Q have to satisfy cer–

tain conditions,necessary to achieve physic-

ally proper field behavior .

ic::c:a:+:: & ‘u
are determined,the phys-

? 1 J2,J ,E ,E can be obtained

through transform~ti~nsyin~erse to (2) .These
inverse linear transformations are singular

at the points

Since ~ ,; are entire functions,the cons--

tants Pyanfi Q must be chosen such that

which is equivalent to

(8)

Conditions (8) lead to a set of two homo–
geneous linear equations in P and Q.For
non–vanishing fields the determinant must

be equal to zero. This condition determines
the possible values of the propagation

stant

L
and the coupling of fields,as

ressed y the ratio P/Q .

IV.WAVE PROPAGATION IN FINLINES

con–

exp-

The presence of fins will impose boundary

conditionsrdual to (4). Thus,surface currents

J ,J vanish on the gaps,while tangential

e~ec&ic field components E ,E must vanish

on the fins: Yz

Jy(y)=O

{

for O<y<W,
J (y)=l)

z

Ey(O,y)=O

\ for Y< O,y>w. (9)
Ez(O,y)=O J /

To satisfy boundary conditions (9),the foll-
owing properties must be prescribed to the

F and U functions:

a–FF are entire functions having

algebrai~’b~havior in the upper half–plane.

b- U1,U2 for finline

symmetrical longitudinal
represented in the form

itiw -
Ul=U~(cL) + e

‘1

U2= U~(~) - e
iciw –

‘2
where U

lower ha~~-~~an~!e ‘Unct’

modes with anti-

currents should be

-o!),

-d),

ons,regular in the

Taking into consideration the properties
a,b , functional equations (3) can be written

icx w
-icJ~X1(&)F1(& ).Uj(ti) + e U;(-d),
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iX2(cL)
F2(&)=U; (C4) – e

ltiw
U;(–a),

@ l’% (lo)

Equations (10) represent the comPlete math–

ematical problem of the bilateral finline.

They can be solved in a way similiar to that

used for (5) . Taking into account the edge

condit~ons ,this solution can be written

(11)

P,Q are yet undetermined constants. X~,X~

are the “minus” functions resulting from

the factorisation of X, ,x. -Coefficients

~n ,~n are the roots of X1,X2 on the UPP-
er half–plane,while the coefficients A ,Bn

are determined from the following syst~ms
of equations

)- ~w
An= 1 -

9n.++m ‘m ‘ ‘=~’2’ ”””’
m.i

2

5.
Bn= 1 + ‘— , n=l,2, . . . (12)

~+cm ‘m
m= 4

Except for very narrow–gap finlinesrsystems
(12)are highly convergent due to the prese-

nce of exponential factors in ~n, ~n 9 n>
&n being imaginary for most surface w;ves.

Coefficients A ,B can practically be cal–

culated to anynre~uired degree of accuracy

at a reasonable computational effort .

Coupling of LSE and LSM fields is establi–

shed as in the case of microstrip line thr–
ough relatlons between P,Q ,which have to
be satisfied in order to ellminate singula–

rities in the transforms of the tangential

electric field components and surface curr–

ents.These relations are written as

‘ince‘i’”i are proportional to P,Q ,

these cons an s satisfy two homogeneous lin–

ear equations.The simultaniety of these equ–

atlons requires a vanishxng determinant .
Thus the possible values of ~ are determined
as the roots of this determinant and the ra–
t-lo P/Q, which 1s the measure of LSE–LSM

coupling, may be calculated.

V.NUMERICAL RESULTS AND PHYSICAL
INTERPRETATION .

For checking of the effectiveness of the
suggested method computations have been per-
formed for a microstrip line with parameters

and for bilateral finline with parameters:

~F=9.7 ,~F=l.O , do/d=5.0

W/d=O.5,1,2,4.

Factorisation of the mesomorphic functions

‘l’x
was achieved by the standard proced–

ure o~ expansion in infinite products invol-

vlng poles and roots .The infinite sets of
equations (7),(12) ,being nearly diagonal,

were solved by iterative procedure showing
very quick convergence.The results of comp–

utation of the effective dielectric constant

2 eff =( ~/ko)2,
and the wave impedance are shown on fig.3,4.

The definition used for the wave impedance

of the microstrip line is similiar to that

adopted at low frequencies i.e. the ratio of
the voltage at the center of the strip to the

total long~tudinal current .For finlines the

wave impedance is taken as the ratio of the

integral over the y–component of the electric
field over the gap to the total longitudinal

current on one of the fins.

In the case of microstrip line approximate
calculations using only one term n=O in the

sum over A are also shown as dashed lines.

Coincidence of the approximate and exact
values over a considerable part of the freq–
uency interval indicates high rate of conver–

gence of the systems of equations ,especially

at high frequencies .Moreover it shows that
the field propagates along the microstrip

line essentially in a multiple reflection
mode as in rectangular and dielectric guides.

The field under the strip is essentially the

sum of two plane TEM waves propagating at
angles ~~ ,where ~ is given by

#=COS-l( ~/k) ,

to the z–axis and are reflected from the str-
ip edges.In the case of narrow strips or at
low frequencies this picture is distorted as
the evanescent modes at the edges will couple

together significantly.

In bilateral finlines the propagation of
non-attenuating waves is possible only when

all poles of
X1’X2

,which coincide with the
propagation constants of waveguide modes In

the regions y<o y > W ,are imaginary.
Otherwise,the excitation of these modes will
necessarily lead to loss of power through

radiation sidewards and to the decay of the

maxn wave in the longitudinal direction .
These poles form two sets:

k~-~~(niT/do)2,
r

n=0,1,2, . .

d
n (J k2-~E[(n-%)~/d]L,n=l ,2,...

Therefore the allowed values of
T

are limi–
ted to the range

For this range of ~ all propagation constants
of LSM and LSE modes in the gap region are

imaginary , except for the lowest order LSE
mode corresponding to the first root of X2,
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This root denoted by ~ ,can be either real

or imaginary.Depending on the value of (~ ,

two modes of propagation in finlines can be

distinguished.When ~ is imaginary the field

in the gap region has a quasi-static charac-
ter and all coefficients 56, ~ are real,,When

~ is real,the field propagates in a wave-

guide mode,guided by multiple reflections of
the surface wave from the fin edges,where

conditions of total reflection exist as all

waveguide modes are evanescent.computatj.ons
have shown , that the two modes are possj.ble.

Quasi-static mode dominates at low frequen-

cies while the waveguide mode is dominant at

high frequencies.

Calculations revealed a curious behavior

of the dispersion curves of finlines at cliff

erent gap widths in the transition regicjn
between quasi–static and waveguide modes.

It was found that these curves,regardless of
the gap width,intersect at a common point on
the line representing the dispersion charac-

teristics of the surface wave mode corres-

ponding to ~ .This can be explained by the

fact that the effect of the width of the gap

on the dispersion characteristics is differ–
ent in the two regions.Thus,in the quasi-

static mode smaller gaps tend to lower the

phase velocity due to field concentratic,n in

the dielectric.In the waveguide mode this ef-

fect is reversed as wider gaps tend to dec–
rease the phase velocity towards the value

for the free surface wave velocity.This eff–
ect is analogous to the effect of width in

rectangular guides .Therefore,the family of
dispersion curves at different widths should

have an intersection point where the effect

is reversed .

Following this analysis it must be rerraar–

ked,that the bilateral finline is senstive
to geometrical imperfections violating the

symmetry of the field,e.g. relative dis-

placement of the gaps.In this case the fun–
dumental TEM mode in the dielectric filled

waveguides between the fins will be excited,
leading to loss of power in the side dii-ec–

tions in finlines without walls or to strong

coupling to the walls if they are present.
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